PhD in Technology in Norway

View all PhD Programs in Technology in Norway 2017

Technology

A PhD, also known as a Doctor of Philosophy degree, is a doctorate awarded by a university to the academic who has met all necessary qualifications and can now be considered a doctor in his or her academic field.

It is with no doubt that the world is taking a sounding turn as far as technology is concerned. Everyone would love to understand whatever it takes to run affairs through technology. This is within range for anyone. You can now take a course in technology. For further studies, there is a doctoral degree in technology. The program is available worldwide, and skills learned can be practiced anywhere in the world.

Norway, officially the Kingdom of Norway, is a Scandinavian unitary constitutional monarchy whose territory comprises the western portion of the Scandinavian Peninsula, Jan Mayen, the Arctic archipelago of Svalbard and the subantarctic Bouvet Island. Higher education in Norway is offered by a range of seven universities.

Top Doctoral Programs in Technology in Norway 2017

Read More

PhD in Applied Micro and Nanosystems

University College of Southeast Norway
Campus Full time Part time January 2017 Norway Rauland

The PhD program in Applied Micro- and Nanosystems educates scientists with broad knowledge in micro- and nano system technologies. This becomes an increasingly important part of our everyday life, in all sorts of "smart systems", as for example sensors integrated into mobile phones, equipment for medical diagnosis, for monitoring the environment and for instrumentation in industrial processes. [+]

Best PhD Degrees in Technology in Norway 2017. PhD in Applied Micro and Nanosystems Micro- and nanotechnology has become a very broad field, spanning everything from physics to materials science, chemistry and electronics, and more. The PhD program in Applied Micro- and Nanosystems educates scientists with broad knowledge in micro- and nano system technologies. This becomes an increasingly important part of our everyday life, in all sorts of "smart systems", as for example sensors integrated into mobile phones, equipment for medical diagnosis, for monitoring the environment and for instrumentation in industrial processes. Academically it builds on a broad range of engineering and science: Electronics, product design / engineering, material-learning, computer science and chemical processing, and basic physics. The research training ranging from design and mathematical modeling with advanced software tools, the manufacturing and characterization of national leader clean room laboratories. The laboratory at USN, along with complementary laboratories in Oslo and Trondheim, constitutes "NorFab" which is the Research Council's investment in infrastructure. The program is closely linked to industry cluster which exist regionally and nationally. This tight connection to the industry is unique among Norwegian PhD programs. The program is part of the reseach school "Nano Network" with national labor, where USN's role is to focusing on integrated, complete systems with direct industrial relevance. Internationally, the academic environment is closely linked to leading research centers in Europe, North America and East Asia. The PhD program's core areas are: Ultrasound for medical, maritime and industrial use. Tasks in design and fabrication/integration of ultrasound transducer, such as for imaging of internal organs or for surveying the seabed. Miniaturised energy sources, eg. energy harvesting from the environment to supply power to inaccessible systems (such as instrumentation on windmill blades or inside the tires). Biomedical components: For faster diagnosis, and implantable sensors for monitoring patient health. High-frequency components: Next-generation radio-, communications- and radar systems. Micro-optics: Thin polymer films for laser projectors and microlenses. Measuring systems for demanding environments: high operating temperatures (as in oil wells, aircraft engines or thermoelectric generators), low operating temperatures (as precision measurements at liquid-nitrogen temperatures), mechanical shock etc. sets requirements for fabrication methods that require solutions different from traditional technology. [-]