General
Program Description
Doctor of Philosophy in Machine Learning
Upon completion of the program requirements, the graduate will be able to:
- Obtain rigorous mathematical background and advanced reasoning capabilities to express a comprehensive and deep understanding of the pipelines at the frontier of machine learning: data, models, algorithmic principles and empirics.
- Master a range of skills and techniques in data-preprocessing, exploration, and visualization of data-statistics as well as complex algorithmic outcomes.
- Have a critical awareness of the capabilities and limitations of the different forms of learning algorithms and the ability to critically analyze, evaluate, and improve the performance of the learning algorithms.
- Grow expert problem-solving skills through independently applying the principles and methods learned in the program to various complex real-world problems.
- Develop a deep understanding of statistical properties and performance guarantees, including convergence rates (in theory and practice) for different learning algorithms.
- Become an expert in using and deploying machine learning-relevant programming tools for a variety of machine learning problems.
- Grow proficiency in identifying the limitations of existing machine learning algorithms and the ability to conceptualize, design, and implement an innovative solution for a variety of highly complex problems to advance the state-of-the-art in machine learning.
- Able to initiate, manage, and complete research manuscripts that demonstrate expert self-evaluation and advanced skills in communicating highly complex ideas related to machine learning.
- Obtain highly sophisticated skills in initiating, managing, and completing multiple project reports and critiques on a variety of machine learning methods, that demonstrate expert understanding, self-evaluation, and advanced skills in communicating highly complex ideas.
The minimum degree requirements for the Ph.D. in Machine Learning are 59 Credits, distributed as follows:
- Core Courses: 4 Courses (15 Credit Hours)
- Elective Courses: 2 Courses (8 Credit Hours)
- Research Thesis: 1 Course (36 Credit Hours)
Core Courses
Ph.D. in Machine Learning is primarily a research-based degree. The purpose of coursework is to equip students with the right skill set, so they can successfully accomplish their research project (thesis). Students are required to take COM701, as a mandatory course. They can select three core courses from a concentration pool of eight in the list provided below:
Code | Course Title | Credit Hours |
COM701 | Research Communication and Dissemination | 3 |
ML701 | Machine Learning | 4 |
ML702 | Advanced Machine Learning | 4 |
ML703 | Probabilistic and Statistical Inference | 4 |
ML704 | Machine Learning Paradigms | 4 |
ML705 | Topics in Advanced Machine Learning | 4 |
ML706 | Advanced Probabilistic and Statistical Inference | 4 |
AI701 | Artificial Intelligence | 4 |
AI702 | Deep Learning | 4 |
Elective Courses
Students will select a minimum of two elective courses, with a total of eight (or more) credit hours (CH) from a list of available elective courses based on interest, proposed research thesis, and career perspectives, in consultation with their supervisory panel. The elective courses available for the Ph.D. in Machine Learning are listed in below table:
Code | Course Title | Credit Hours |
MTH701 | Mathematical Foundations for Artificial Intelligence | 4 |
MTH702 | Optimization | 4 |
CS701 | Advanced Programming | 4 |
CS702 | Data Structures and Algorithms | 4 |
DS701 | Data Mining | 4 |
DS702 | Big Data Processing | 4 |
CV701 | Human and Computer Vision | 4 |
CV702 | Geometry for Computer Vision | 4 |
CV703 | Visual Object Recognition and Detection | 4 |
NLP701 | Natural Language Processing | 4 |
NLP702 | Advanced Natural Language Processing | 4 |
NLP703 | Speech Processing | 4 |
HC701 | Medical Imaging: Physics and Analysis | 4 |
Research Thesis
Ph.D. thesis exposes students to cutting-edge and unsolved research problems in the field of Machine Learning, where they are required to propose new solutions and significantly contribute to the body of knowledge. Students pursue an independent research study, under the guidance of a supervisory panel, for a period of 3-4 years.
Code | Course Title | Credit Hours |
ML799 | Ph.D. Research Thesis | 36 |
About the School
The Mohamed bin Zayed University of Artificial Intelligence (MBZUAI) in Abu Dhabi, is a graduate-level, research-based academic institution that offers specialized degree programs for local and intern ... Read More