Ph.D. in Applied Micro and Nanosystems

PhD in Applied Micro and Nanosystems

Micro and nanotechnology has become a very broad field, spanning everything from physics to materials science, chemistry and electronics, and more.

The Ph.D. program in Applied Micro- and Nanosystems educates scientists with broad knowledge of micro and nano system technologies. This becomes an increasingly important part of our everyday life, in all sorts of "smart systems", as for example sensors integrated into mobile phones, equipment for medical diagnosis, for monitoring the environment and for instrumentation in industrial processes.

Academically it builds on a broad range of engineering and science: Electronics, product design/engineering, material-learning, computer science and chemical processing, and basic physics. The research training ranging from design and mathematical modeling with advanced software tools, the manufacturing, and characterization of national leader clean room laboratories.

The laboratory at USN, along with complementary laboratories in Oslo and Trondheim, constitutes "NorFab" which is the Research Council's investment in infrastructure. The program is closely linked to industry cluster which exists regionally and nationally. This tight connection to the industry is unique among Norwegian Ph.D. programs. The program is part of the research school "Nano-Network" with national labor, where USN's role is to focus on integrated, complete systems with direct industrial relevance. Internationally, the academic environment is closely linked to leading research centers in Europe, North America, and East Asia.

The Ph.D. program's core areas are:

  1. Ultrasound for medical, maritime and industrial use. Tasks in design and fabrication/integration of ultrasound transducer, such as for imaging of internal organs or for surveying the seabed.
  2. Miniaturised energy sources, eg. energy harvesting from the environment to supply power to inaccessible systems (such as instrumentation on windmill blades or inside the tires).
  3. Biomedical components: For faster diagnosis, and implantable sensors for monitoring patient health.
  4. High-frequency components: Next-generation radio-, communications- and radar systems.
  5. Micro-optics: Thin polymer films for laser projectors and microlenses.
  6. Measuring systems for demanding environments: high operating temperatures (as in oil wells, aircraft engines or thermoelectric generators), low operating temperatures (as precision measurements at liquid-nitrogen temperatures), mechanical shock etc. sets requirements for fabrication methods that require solutions different from traditional technology.
Program taught in:
  • English

See 6 more programs offered by University College of Southeast Norway »

Last updated November 16, 2018
This course is Campus based
Start Date
Request Info
Jan 2020
Aug 2020
Duration
Request Info
Part-time
Full-time
Price
Deadline
By locations
By date
Start Date
End Date
Application deadline
Start Date
Jan 2020, Aug 2020
End Date
Application deadline
Start Date
Jan 2020, Aug 2020
End Date
Application deadline
Start Date
Jan 2020, Aug 2020
End Date
Application deadline
Start Date
Jan 2020, Aug 2020
End Date
Application deadline
Start Date
End Date
Application deadline
Start Date
End Date
Application deadline
Start Date
End Date
Application deadline
Start Date
End Date
Application deadline
Start Date
End Date
Application deadline
Start Date
End Date
Application deadline
Location
Application deadline
End Date
Location
Application deadline
End Date
Application deadline
End Date
Location
Application deadline
End Date
Location
Application deadline
End Date
Location
Application deadline
End Date
Location
Application deadline
End Date

Jan 2020, Aug 2020

Location
Application deadline
End Date
Application deadline
End Date
Application deadline
End Date
Application deadline
End Date